Overview |
bs-70226r-100ul |
Potassium Channel, Voltage Gated, Kv2.2 Subunit Antibody |
WB, IHC |
Specific for endogenous levels of the ~125 kDa voltage gated potassium channel, Kv2.2 subunit. |
Rat, Xenopus |
Specifications |
Unconjugated |
Rabbit |
Synthetic peptide from the subunit region of the voltage gated potassium channel from the rat and Xenopus Kv2.2 sequence, conjugated to keyhole limpet hemocyanin (KLH). |
Polyclonal |
IgG |
Lot Dependent |
Antigen Affinity purification from Pooled whole antiserum |
10 mM HEPES (pH 7.5), 150 mM NaCl, 100 µg per ml BSA and 50% glycerol. |
Storage at -20°C is recommended, as aliquots may be taken without freeze/thawing due to presence of 50% glycerol. Stable for at least 1 year at -20°C. |
Target |
621349 |
Q63099 |
delayed rectifier potassium channel protein antibody, KCNB2 antibody, KCNB2_HUMAN antibody, potassium channel Kv2.2 antibody, potassium voltage gated channel subfamily B member 2 antibody, Potassium voltage-gated channel subfamily B member 2 antibody, Voltage-gated potassium channel subunit Kv2.2 antibody |
Voltage-gated K+ channels are important determinants of neuronal membrane excitability (Pongs, 1999). Moreover, differences in K+ channel expression patterns and densities contribute to the variations in action potential waveforms and repetitive firing patterns evident in different neuronal cell types. The delayed rectifier-type (IK)channels (Kv1.5, Kv2.1, and Kv2.2) are expressed on all neuronal somata and proximal dendrites and are also found in a wide variety of non-neuronal cells types including pancreatic islets, alveolar cells and cardiac myocytes (Hwang et al., 1993; Yan et al., 2004; Michaelevski et al., 2003). Kv2.1 and Kv2.2 form distinct populations of K+ channels and these subunits are thought to be primarily responsible for IK in superior cervical ganglion cells (Blaine and Ribera, 1998; Burger and Ribera, 1996). |
Application Dilution |
WB |
1:300-5000 |
IHC |
|