Overview |
bsm-52154r-100ul |
Estrogen Receptor alpha(S118) Recombinant Antibody |
WB, FCM, IHC-P, IF(ICC) |
Human, Mouse, Rat |
Specifications |
Unconjugated |
Rabbit |
Synthetic peptide derived from human Estrogen Receptor alpha(S118), around 180-220aa (phospho S209). |
S118 |
Recombinant |
IgG |
1ug/ul |
Purified by Protein A. |
0.01M TBS(pH7.4) with 1% BSA, 0.02% Proclin300 and 50% Glycerol. |
Shipped at 4℃. Store at -20℃ for one year. Avoid repeated freeze/thaw cycles. |
Target |
2099 |
P03372 |
ER; ESR; Era; ESRA; ESTRR; NR3A1; Estrogen receptor; ER-alpha; Estradiol receptor; Nuclear receptor subfamily 3 group A member 1; ESR1 |
Nuclear hormone receptor. The steroid hormones and their receptors are involved in the regulation of eukaryotic gene expression and affect cellular proliferation and differentiation in target tissues. Ligand-dependent nuclear transactivation involves either direct homodimer binding to a palindromic estrogen response element (ERE) sequence or association with other DNA-binding transcription factors, such as AP-1/c-Jun, c-Fos, ATF-2, Sp1 and Sp3, to mediate ERE-independent signaling. Ligand binding induces a conformational change allowing subsequent or combinatorial association with multiprotein coactivator complexes through LXXLL motifs of their respective components. Mutual transrepression occurs between the estrogen receptor (ER) and NF-kappa-B in a cell-type specific manner. Decreases NF-kappa-B DNA-binding activity and inhibits NF-kappa-B-mediated transcription from the IL6 promoter and displace RELA/p65 and associated coregulators from the promoter. Recruited to the NF-kappa-B response element of the CCL2 and IL8 promoters and can displace CREBBP. Present with NF-kappa-B components RELA/p65 and NFKB1/p50 on ERE sequences. Can also act synergistically with NF-kappa-B to activate transcription involving respective recruitment adjacent response elements; the function involves CREBBP. Can activate the transcriptional activity of TFF1. Also mediates membrane-initiated estrogen signaling involving various kinase cascades. Isoform 3 is involved in activation of NOS3 and endothelial nitric oxide production. Isoforms lacking one or several functional domains are thought to modulate transcriptional activity by competitive ligand or DNA binding and/or heterodimerization with the full length receptor. Essential for MTA1-mediated transcriptional regulation of BRCA1 and BCAS3. Isoform 3 can bind to ERE and inhibit isoform 1. |
Application Dilution |
WB |
1:300-5000 |
FCM |
1:20-100 |
IHC-P |
1:200-400 |
IF(ICC) |
1:50-200 |