New to Bioss? Enjoy 35% of your first order. Use code "FirstOrder35" - Offer valid for new U.S. Customers on direct orders only

Human Heat Shock 70kDa Protein 8 (HSPA8) ELISA Kit

Due to the possibility of mismatching between antigens from other origin and antibodies used in our kits (e.g., antibody targets conformational epitope rather than linear epitope), some native or recombinant proteins from other manufacturers may not be recognized by our products.

Principle of the Assay

The microtiter plate provided in this kit has been pre-coated with an antibody specific to HSPA8. Standards or samples are then added to the appropriate microtiter plate wells with a biotin-conjugated antibody preparation specific to HSPA8. Next, Avidin conjugated to Horseradish Peroxidase (HRP) is added to each microplate well and incubated. After the TMB substrate solution is added, only those wells that contain HSPA8, biotin-conjugated antibody, and enzyme-conjugated Avidin will exhibit a change in color. The enzyme-substrate reaction is terminated by the addition of sulphuric acid solution, and the color change is measured spectrophotometrically at a wavelength of 450nm ± 10nm. The concentration of HSPA8 in the samples is then determined by comparing the O.D. of the samples to the standard curve.


For Use with serum, plasma, and cell culture supernatants. For Research Use Only. Not for use in diagnostic procedures.

Target Information

Molecular chaperone implicated in a wide variety of cellular processes, including protection of the proteome from stress, folding and transport of newly synthesized polypeptides, activation of proteolysis of misfolded proteins and the formation and dissociation of protein complexes. Plays a pivotal role in the protein quality control system, ensuring the correct folding of proteins, the re-folding of misfolded proteins and controlling the targeting of proteins for subsequent degradation (PubMed:21150129, PubMed:21148293, PubMed:24732912, PubMed:27916661, PubMed:23018488). This is achieved through cycles of ATP binding, ATP hydrolysis and ADP release, mediated by co-chaperones (PubMed:21150129, PubMed:21148293, PubMed:24732912, PubMed:27916661, PubMed:23018488, PubMed:12526792). The co-chaperones have been shown to not only regulate different steps of the ATPase cycle of HSP70, but they also have an individual specificity such that one co-chaperone may promote folding of a substrate while another may promote degradation (PubMed:21150129, PubMed:21148293, PubMed:24732912, PubMed:27916661, PubMed:23018488, PubMed:12526792). The affinity of HSP70 for polypeptides is regulated by its nucleotide bound state. In the ATP-bound form, it has a low affinity for substrate proteins. However, upon hydrolysis of the ATP to ADP, it undergoes a conformational change that increases its affinity for substrate proteins. HSP70 goes through repeated cycles of ATP hydrolysis and nucleotide exchange, which permits cycles of substrate binding and release. The HSP70-associated co-chaperones are of three types: J-domain co-chaperones HSP40s (stimulate ATPase hydrolysis by HSP70), the nucleotide exchange factors (NEF) such as BAG1/2/3 (facilitate conversion of HSP70 from the ADP-bound to the ATP-bound state thereby promoting substrate release), and the TPR domain chaperones such as HOPX and STUB1 (PubMed:24318877, PubMed:27474739, PubMed:24121476, PubMed:26865365). Plays a critical role in mitochondrial import, delivers preproteins to the mitochondrial import receptor TOMM70 (PubMed:12526792). Acts as a repressor of transcriptional activation. Inhibits the transcriptional coactivator activity of CITED1 on Smad-mediated transcription. Component of the PRP19-CDC5L complex that forms an integral part of the spliceosome and is required for activating pre-mRNA splicing. May have a scaffolding role in the spliceosome assembly as it contacts all other components of the core complex. Binds bacterial lipopolysaccharide (LPS) and mediates LPS-induced inflammatory response, including TNF secretion by monocytes (PubMed:10722728, PubMed:11276205). Participates in the ER-associated degradation (ERAD) quality control pathway in conjunction with J domain-containing co-chaperones and the E3 ligase STUB1 (PubMed:23990462). Interacts with VGF-derived peptide TLQP-21 (PubMed:28934328).

GENE ID 3312
SWISS PROT P11142
SYNONYMS LAP1; HSC54; HSC70; HSC71; HSP71; HSPA10; NIP71; HSP73; Heat shock cognate 71 kDa protein; Lipopolysaccharide-associated protein 1; LPS-associated protein 1


Materials Supplied

Kit Components 96 Wells Quantity/Size
Pre-coated, ready-to-use 96-well strip plate 1 plate
Plate sealer for 96 wells 2
Standard
2 tubes
Diluent buffer 1 bottle
Detection Reagent A 1 bottle
Detection Reagent B 1 bottle
TMB Substrate 1 tube
Stop Solution 1 tube
Wash Buffer (30 ℅ concentrate) 1 tube
Product data sheet 1 copy

Storage

Storage The TMB Substrate, Wash Buffer (30X concentrate), and the Stop Solution should be stored at 4°C upon receipt, while the other items should be stored at -20°C.

Performance Characteristics

REPEATABILITY

Intra-assay Precision (Precision within an assay): 3 samples with low, middle, and high-level HSPA8 were tested 20 times on one plate, respectively.
Inter-assay Precision (Precision between assays): 3 samples with low, middle, and high-level HSPA8 were tested on 3 different plates, with 8 replicates in each plate.
CV(%) = SD/meanX100

Intra-Assay: CV<10%
Inter-Assay: CV<12%

SENSITIVITY The minimum detectable dose was 0.134ng/mL.
ASSAY RANGE 0.312-20ng/mL
SPECIFICITY This assay has high sensitivity and excellent specificity for the detection of HSPA8.
No significant cross-reactivity or interference between HSPA8 and analogs was observed.
Note:
Limited by current skills and knowledge, it is impossible to perform all possible cross-reactivity detection tests between HSPA8 and all analogs, therefore, cross reactivity may still exist.