Get 20% off all conjugated antibody purchases with code "CON-ANTIBODY2025"! Offer valid on direct orders only. Available for US customers and internationally through distributors.

Human Apolipoprotein E (APOE) ELISA Kit

Due to the possibility of mismatching between antigens from other origin and antibodies used in our kits (e.g., antibody targets conformational epitope rather than linear epitope), some native or recombinant proteins from other manufacturers may not be recognized by our products.

Principle of the Assay

The microtiter plate provided in this kit has been pre-coated with an antibody specific to APOE. Standards or samples are then added to the appropriate microtiter plate wells with a biotin-conjugated antibody preparation specific to APOE. Next, Avidin conjugated to Horseradish Peroxidase (HRP) is added to each microplate well and incubated. After the TMB substrate solution is added, only those wells that contain APOE, biotin-conjugated antibody, and enzyme-conjugated Avidin will exhibit a change in color. The enzyme-substrate reaction is terminated by the addition of sulphuric acid solution, and the color change is measured spectrophotometrically at a wavelength of 450nm ± 10nm. The concentration of APOE in the samples is then determined by comparing the O.D. of the samples to the standard curve.


For Use with serum, plasma, and cell culture supernatants. For Research Use Only. Not for use in diagnostic procedures.

Target Information

APOE is an apolipoprotein, a protein associating with lipid particles, that mainly functions in lipoprotein-mediated lipid transport between organs via the plasma and interstitial fluids (PubMed:6860692, PubMed:1911868, PubMed:14754908). APOE is a core component of plasma lipoproteins and is involved in their production, conversion and clearance (PubMed:6860692, PubMed:2762297, PubMed:1911868, PubMed:1917954, PubMed:9395455, PubMed:14754908, PubMed:23620513). Apoliproteins are amphipathic molecules that interact both with lipids of the lipoprotein particle core and the aqueous environment of the plasma (PubMed:6860692, PubMed:2762297, PubMed:9395455). As such, APOE associates with chylomicrons, chylomicron remnants, very low density lipoproteins (VLDL) and intermediate density lipoproteins (IDL) but shows a preferential binding to high-density lipoproteins (HDL) (PubMed:6860692, PubMed:1911868). It also binds a wide range of cellular receptors including the LDL receptor/LDLR, the LDL receptor-related proteins LRP1, LRP2 and LRP8 and the very low-density lipoprotein receptor/VLDLR that mediate the cellular uptake of the APOE-containing lipoprotein particles (PubMed:2762297, PubMed:1917954, PubMed:7768901, PubMed:8939961, PubMed:12950167, PubMed:20030366, PubMed:2063194, PubMed:8756331, PubMed:20303980, PubMed:1530612, PubMed:7635945). Finally, APOE has also a heparin-binding activity and binds heparan-sulfate proteoglycans on the surface of cells, a property that supports the capture and the receptor-mediated uptake of APOE-containing lipoproteins by cells (PubMed:9395455, PubMed:9488694, PubMed:23676495, PubMed:7635945). A main function of APOE is to mediate lipoprotein clearance through the uptake of chylomicrons, VLDLs, and HDLs by hepatocytes (PubMed:1911868, PubMed:1917954, PubMed:9395455, PubMed:23676495, PubMed:29516132). APOE is also involved in the biosynthesis by the liver of VLDLs as well as their uptake by peripheral tissues ensuring the delivery of triglycerides and energy storage in muscle, heart and adipose tissues (PubMed:2762297, PubMed:29516132). By participating in the lipoprotein-mediated distribution of lipids among tissues, APOE plays a critical role in plasma and tissues lipid homeostasis (PubMed:2762297, PubMed:1917954, PubMed:29516132). APOE is also involved in two steps of reverse cholesterol transport, the HDLs-mediated transport of cholesterol from peripheral tissues to the liver, and thereby plays an important role in cholesterol homeostasis (PubMed:9395455, PubMed:14754908, PubMed:23620513). First, it is functionally associated with ABCA1 in the biogenesis of HDLs in tissues (PubMed:14754908, PubMed:23620513). Second, it is enriched in circulating HDLs and mediates their uptake by hepatocytes (PubMed:9395455). APOE also plays an important role in lipid transport in the central nervous system, regulating neuron survival and sprouting (PubMed:8939961, PubMed:25173806). APOE is also involved in innate and adaptive immune responses, controlling for instance the survival of myeloid-derived suppressor cells (By similarity). Binds to the immune cell receptor LILRB4 (PubMed:30333625). APOE may also play a role in transcription regulation through a receptor-dependent and cholesterol-independent mechanism, that activates MAP3K12 and a non-canonical MAPK signal transduction pathway that results in enhanced AP-1-mediated transcription of APP (PubMed:28111074).

GENE ID 348
SWISS PROT P02649
SYNONYMS Apo-E; AD2; Apoprotein; Alzheimer Disease 2(E4-Associated,Late Onset


Materials Supplied

Kit Components 96 Wells Quantity/Size
Pre-coated, ready-to-use 96-well strip plate 1 plate
Plate sealer for 96 wells 2
Standard
2 tubes
Diluent buffer 1 bottle
Detection Reagent A 1 bottle
Detection Reagent B 1 bottle
TMB Substrate 1 tube
Stop Solution 1 tube
Wash Buffer (30 ℅ concentrate) 1 tube
Product data sheet 1 copy

Storage

Storage The TMB Substrate, Wash Buffer (30X concentrate), and the Stop Solution should be stored at 4°C upon receipt, while the other items should be stored at -20°C.

Performance Characteristics

REPEATABILITY

Intra-assay Precision (Precision within an assay): 3 samples with low, middle, and high-level APOE were tested 20 times on one plate, respectively.
Inter-assay Precision (Precision between assays): 3 samples with low, middle, and high-level APOE were tested on 3 different plates, with 8 replicates in each plate.
CV(%) = SD/meanX100

Intra-Assay: CV<10%
Inter-Assay: CV<12%

SENSITIVITY The minimum detectable dose was 8.47ng/mL.
ASSAY RANGE 23.4-1500ng/mL
SPECIFICITY This assay has high sensitivity and excellent specificity for the detection of APOE.
No significant cross-reactivity or interference between APOE and analogs was observed.
Note:
Limited by current skills and knowledge, it is impossible to perform all possible cross-reactivity detection tests between APOE and all analogs, therefore, cross reactivity may still exist.