Overview |
bs-70108r-50ul |
GABAA Receptor γ2 Antibody |
WB, IHC |
Specific for endogenous levels of the ~46 kDa γ2-subunit of the GABAA receptor. |
Mouse, Rat |
Human, Chicken, Zebrafish, Non-Human Primate |
Specifications |
Unconjugated |
Rabbit |
Synthetic peptide corresponding to amino acid residues specific to the γ2 subunit of rat GABAA receptor, conjugated to keyhole limpet hemocyanin (KLH). |
Polyclonal |
IgG |
Lot Dependent |
Neat Pooled whole antiserum |
Neat whole antiserum |
Storage at -20°C is recommended, as aliquots may be taken without freeze/thawing due to presence of 50% glycerol. Stable for at least 1 year at -20°C. |
Target |
29709 |
P18508 |
CAE 2 antibody, CAE2 antibody, ECA 2 antibody, ECA2 antibody, GABA(A) receptor gamma 2 antibody, GABA(A) receptor subunit gamma 2 antibody, GABA(A) receptor subunit gamma-2 antibody, GABRG 2 antibody, GABRγ2 antibody, Gamma aminobutyric acid (GABA) A receptor gamma 2 antibody, Gamma aminobutyric acid A receptor gamma 2 antibody, Gamma aminobutyric acid receptor gamma 2 subunit antibody, Gamma-aminobutyric acid receptor subunit gamma-2 antibody, GBRG2_HUMAN antibody, GEFSP 3 antibody, GEFSP3 antibody |
Gamma-aminobutyric acid (GABA) is the primary inhibitory neurotransmitter in the central nervous system, causing a hyperpolarization of the membrane through the opening of a Cl− channel associated with the GABA-A receptor (GABA-A-R) subtype. GABA-A-Rs are important therapeutic targets for a range of sedative, anxiolytic, and hypnotic agents and are implicated in several diseases including epilepsy, anxiety, depression, and substance abuse. The GABA-A-R is a multimeric subunit complex. To date six αs, four βs and four γs, plus alternative splicing variants of some of these subunits, have been identified (Olsen and Tobin, 1990; Whiting et al., 1999; Ogris et al., 2004). Injection in oocytes or mammalian cell lines of cRNA coding for α- and β-subunits results in the expression of functional GABA-A-Rs sensitive to GABA. However, co-expression of a γ-subunit is required for benzodiazepine modulation. The various effects of the benzodiazepines in brain may also be mediated via different α- subunits of the receptor (McKernan et al., 2000; Mehta and Ticku, 1998; Ogris et al., 2004; Pöltl et al., 2003). Lastly, phosphorylation of β-subunits of the receptor has been shown to modulate GABA-A-R function (Brandon et al., 2003). |
Application Dilution |
WB |
1:300-5000 |
IHC |
|