Get 20% off all conjugated antibody purchases with code "CON-ANTIBODY2025"! Offer valid on direct orders only. Available for US customers and internationally through distributors.

Kir6.2 (KCNJ11) Polyclonal Antibody, HRP Conjugated

Applications

  • WB
  • ELISA
  • IHC-P

Reactivity

  • Human
  • Mouse
  • Rat

Predicted Reactivity

  • Dog
  • Cow
  • Rabbit
Overview
Catalog # bs-2436R-HRP
Product Name Kir6.2 (KCNJ11) Polyclonal Antibody, HRP Conjugated
Applications WB, ELISA, IHC-P
Reactivity Human, Mouse, Rat
Predicted Reactivity Dog, Cow, Rabbit
Specifications
Conjugation HRP
Host Rabbit
Source KLH conjugated synthetic peptide derived from human Kir62
Immunogen Range 301-390/390
Clonality Polyclonal
Isotype IgG
Concentration 1ug/ul
Purification Purified by Protein A.
Storage Buffer Aqueous buffered solution containing 0.01M TBS (pH 7.4) with 1% BSA, 0.03% Proclin300 and 50% Glycerol.
Storage Condition Store at -20°C. Aliquot into multiple vials to avoid repeated freeze-thaw cycles.
Target
Gene ID 3767
Swiss Prot Q14654
Subcellular location Cell membrane
Synonyms ATP sensitive inward rectier potassium channel 11; Beta cell inward rectier subunit; mBIR; BIR; HHF 2; HHF2; IKATP; Inward rectier K+ channel Kir6.2; Inwardly rectying potassium channel KIR6.2; IRK 11; IRK11; KCNJ11; Kir 6.2; Kir6.2; MGC133230; PHHI; Potassium channel, inwardly rectying subfamily J member 11; Potassium inwardly rectying channel J11; TNDM 3; TNDM3; IRK11_HUMAN.
Background Potassium channels are present in most mammalian cells, where they participate in a wide range of physiologic responses. The protein encoded by this gene is an integral membrane protein and inward-rectifier type potassium channel. The encoded protein, which has a greater tendency to allow potassium to flow into a cell rather than out of a cell, is controlled by G-proteins and is found associated with the sulfonylurea receptor SUR. Mutations in this gene are a cause of familial persistent hyperinsulinemic hypoglycemia of infancy (PHHI), an autosomal recessive disorder characterized by unregulated insulin secretion. Defects in this gene may also contribute to autosomal dominant non-insulin-dependent diabetes mellitus type II (NIDDM), transient neonatal diabetes mellitus type 3 (TNDM3), and permanent neonatal diabetes mellitus (PNDM). Multiple alternatively spliced transcript variants that encode different protein isoforms have been described for this gene. [provided by RefSeq]
Application Dilution
WB 1:300-5000
ELISA 1:500-1000
IHC-P 1:200-400