Get 20% off all conjugated antibody purchases with code "CON-ANTIBODY2025"! Offer valid on direct orders only. Available for US customers and internationally through distributors.

NFkB p105 / p50 Polyclonal Antibody, PE Conjugated

Applications

  • WB

Reactivity

  • Human
  • Mouse
  • Rat

Predicted Reactivity

  • Dog
  • Cow
  • Pig
  • Chicken
Overview
Catalog # bs-1194R-PE
Product Name NFkB p105 / p50 Polyclonal Antibody, PE Conjugated
Applications WB
Reactivity Human, Mouse, Rat
Predicted Reactivity Dog, Cow, Pig, Chicken
Specifications
Conjugation PE
Host Rabbit
Source KLH conjugated synthetic peptide derived from human NFKB1
Immunogen Range 51-100/968
Clonality Polyclonal
Isotype IgG
Concentration 1ug/ul
Purification Purified by Protein A.
Storage Buffer Aqueous buffered solution containing 0.01M TBS (pH 7.4) with 1% BSA, 0.03% Proclin300 and 50% Glycerol.
Storage Condition Store at -20°C. Aliquot into multiple vials to avoid repeated freeze-thaw cycles.
Target
Gene ID 4790
Swiss Prot P19838
Subcellular location Cytoplasm, Nucleus
Synonyms p50; KBF1; p105; EBP-1; NF-kB1; NFKB-p50; NFkappaB; NF-kappaB; NFKB-p105; NF-kappa-B; Nuclear factor NF-kappa-B p105 subunit; DNA-binding factor KBF1; Nuclear factor of kappa light polypeptide gene enhancer in B-cells 1; NFKB1
Background NF-kappa-B is a pleiotropic transcription factor present in almost all cell types and is the endpoint of a series of signal transduction events that are initiated by a vast array of stimuli related to many biological processes such as inflammation, immunity, differentiation, cell growth, tumorigenesis and apoptosis. NF-kappa-B is a homo- or heterodimeric complex formed by the Rel-like domain-containing proteins RELA/p65, RELB, NFKB1/p105, NFKB1/p50, REL and NFKB2/p52 and the heterodimeric p65-p50 complex appears to be most abundant one. The dimers bind at kappa-B sites in the DNA of their target genes and the individual dimers have distinct preferences for different kappa-B sites that they can bind with distinguishable affinity and specificity. Different dimer combinations act as transcriptional activators or repressors, respectively. NF-kappa-B is controlled by various mechanisms of post-translational modification and subcellular compartmentalization as well as by interactions with other cofactors or corepressors. NF-kappa-B complexes are held in the cytoplasm in an inactive state complexed with members of the NF-kappa-B inhibitor (I-kappa-B) family. In a conventional activation pathway, I-kappa-B is phosphorylated by I-kappa-B kinases (IKKs) in response to different activators, subsequently degraded thus liberating the active NF-kappa-B complex which translocates to the nucleus. NF-kappa-B heterodimeric p65-p50 and RelB-p50 complexes are transcriptional activators. The NF-kappa-B p50-p50 homodimer is a transcriptional repressor, but can act as a transcriptional activator when associated with BCL3. NFKB1 appears to have dual functions such as cytoplasmic retention of attached NF-kappa-B proteins by p105 and generation of p50 by a cotranslational processing. The proteasome-mediated process ensures the production of both p50 and p105 and preserves their independent function, although processing of NFKB1/p105 also appears to occur post-translationally.
Application Dilution
WB 1:300-5000