Rat Protein Kinase B Beta (PKBb) ELISA Kit
Due to the possibility of mismatching between antigens from other origin and antibodies used in our kits (e.g., antibody targets conformational epitope rather than linear epitope), some native or recombinant proteins from other manufacturers may not be recognized by our products.
Principle of the Assay
The microtiter plate provided in this kit has been pre-coated with an antibody specific to PKBb. Standards or samples are then added to the appropriate microtiter plate wells with a biotin-conjugated antibody preparation specific to PKBb. Next, Avidin conjugated to Horseradish Peroxidase (HRP) is added to each microplate well and incubated. After the TMB substrate solution is added, only those wells that contain PKBb, biotin-conjugated antibody, and enzyme-conjugated Avidin will exhibit a change in color. The enzyme-substrate reaction is terminated by the addition of sulphuric acid solution, and the color change is measured spectrophotometrically at a wavelength of 450nm ± 10nm. The concentration of PKBb in the samples is then determined by comparing the O.D. of the samples to the standard curve.
For Use with serum, plasma, and cell culture supernatants. For Research Use Only. Not for use in diagnostic procedures.
Target Information
AKT2 is one of 3 closely related serine/threonine-protein kinases (AKT1, AKT2 and AKT3) called the AKT kinase, and which regulate many processes including metabolism, proliferation, cell survival, growth and angiogenesis. This is mediated through serine and/or threonine phosphorylation of a range of downstream substrates. Over 100 substrate candidates have been reported so far, but for most of them, no isoform specificity has been reported. AKT is responsible of the regulation of glucose uptake by mediating insulin-induced translocation of the SLC2A4/GLUT4 glucose transporter to the cell surface. Phosphorylation of PTPN1 at 'Ser-50' negatively modulates its phosphatase activity preventing dephosphorylation of the insulin receptor and the attenuation of insulin signaling. Phosphorylation of TBC1D4 triggers the binding of this effector to inhibitory 14-3-3 proteins, which is required for insulin-stimulated glucose transport. AKT regulates also the storage of glucose in the form of glycogen by phosphorylating GSK3A at 'Ser-21' and GSK3B at 'Ser-9', resulting in inhibition of its kinase activity. Phosphorylation of GSK3 isoforms by AKT is also thought to be one mechanism by which cell proliferation is driven. AKT regulates also cell survival via the phosphorylation of MAP3K5 (apoptosis signal-related kinase). Phosphorylation of 'Ser-83' decreases MAP3K5 kinase activity stimulated by oxidative stress and thereby prevents apoptosis. AKT mediates insulin-stimulated protein synthesis by phosphorylating TSC2 at 'Ser-939' and 'Thr-1462', thereby activating mTORC1 signaling and leading to both phosphorylation of 4E-BP1 and in activation of RPS6KB1. AKT is involved in the phosphorylation of members of the FOXO factors (Forkhead family of transcription factors), leading to binding of 14-3-3 proteins and cytoplasmic localization. In particular, FOXO1 is phosphorylated at 'Thr-24', 'Ser-256' and 'Ser-319'. FOXO3 and FOXO4 are phosphorylated on equivalent sites. AKT has an important role in the regulation of NF-kappa-B-dependent gene transcription and positively regulates the activity of CREB1 (cyclic AMP (cAMP)-response element binding protein). The phosphorylation of CREB1 induces the binding of accessory proteins that are necessary for the transcription of pro-survival genes such as BCL2 and MCL1. AKT phosphorylates 'Ser-454' on ATP citrate lyase (ACLY), thereby potentially regulating ACLY activity and fatty acid synthesis. Activates the 3B isoform of cyclic nucleotide phosphodiesterase (PDE3B) via phosphorylation of 'Ser-273', resulting in reduced cyclic AMP levels and inhibition of lipolysis. Phosphorylates PIKFYVE on 'Ser-318', which results in increased PI(3)P-5 activity. The Rho GTPase-activating protein DLC1 is another substrate and its phosphorylation is implicated in the regulation cell proliferation and cell growth. AKT plays a role as key modulator of the AKT-mTOR signaling pathway controlling the tempo of the process of newborn neurons integration during adult neurogenesis, including correct neuron positioning, dendritic development and synapse formation. Signals downstream of phosphatidylinositol 3-kinase (PI(3)K) to mediate the effects of various growth factors such as platelet-derived growth factor (PDGF), epidermal growth factor (EGF), insulin and insulin-like growth factor I (IGF-I). AKT mediates the antiapoptotic effects of IGF-I. Essential for the SPATA13-mediated regulation of cell migration and adhesion assembly and disassembly. May be involved in the regulation of the placental development.
GENE ID | 208 |
SWISS PROT | P31751 |
SYNONYMS |
AKT2; PKBBETA; PRKB-B; RAC-BETA; RAC-Beta Serine/Threonine-Protein Kinase; V-Akt Murine Thymoma Viral Oncogene Homolog 2 |
Materials Supplied
Kit Components | 96 Wells Quantity/Size |
---|---|
Pre-coated, ready-to-use 96-well strip plate | 1 plate |
Plate sealer for 96 wells | 2 |
Standard |
2 tubes |
Diluent buffer | 1 bottle |
Detection Reagent A | 1 bottle |
Detection Reagent B | 1 bottle |
TMB Substrate | 1 tube |
Stop Solution | 1 tube |
Wash Buffer (30 ℅ concentrate) | 1 tube |
Product data sheet | 1 copy |
Storage
Storage | The TMB Substrate, Wash Buffer (30X concentrate), and the Stop Solution should be stored at 4°C upon receipt, while the other items should be stored at -20°C. |
Performance Characteristics
REPEATABILITY |
Intra-assay Precision (Precision within an assay): 3 samples with low, middle, and high-level PKBb were tested 20 times on one plate, respectively. |
SENSITIVITY | The minimum detectable dose was 0.114ng/mL. |
ASSAY RANGE | 0.312-20ng/mL |
SPECIFICITY | This assay has high sensitivity and excellent specificity for the detection of PKBb. No significant cross-reactivity or interference between PKBb and analogs was observed. Note: Limited by current skills and knowledge, it is impossible to perform all possible cross-reactivity detection tests between PKBb and all analogs, therefore, cross reactivity may still exist. |