25% Off Flow Cytometry Antibodies - Use Code: "EggyIggy2024" - Valid 3/29-4/5/24 for U.S. customers only

AGER Polyclonal Antibody, ALEXA FLUOR® 488 Conjugated

Applications

  • WB
  • FCM
  • IF(IHC-P)
  • IF(IHC-F)
  • IF(ICC)

Reactivity

  • Human
  • Mouse
  • Rat

Predicted Reactivity

  • Dog
  • Cow
  • Pig
Overview
Catalog # bs-4999R-A488
Product Name AGER Polyclonal Antibody, ALEXA FLUOR® 488 Conjugated
Applications WB, FCM, IF(IHC-P), IF(IHC-F), IF(ICC)
Reactivity Human, Mouse, Rat
Predicted Reactivity Dog, Cow, Pig
Specifications
Conjugation ALEXA FLUOR® 488
Host Rabbit
Source KLH conjugated synthetic peptide derived from human AGER
Immunogen Range 41-150/404
Clonality Polyclonal
Isotype IgG
Concentration 1ug/ul
Purification Purified by Protein A.
Storage Buffer Aqueous buffered solution containing 0.01M TBS (pH 7.4) with 1% BSA, 0.03% Proclin300 and 50% Glycerol.
Storage Condition Store at -20°C. Aliquot into multiple vials to avoid repeated freeze-thaw cycles.
Target
Gene ID 177
Swiss Prot Q15109
Subcellular location Cell membrane
Synonyms RAGE; Advanced glycosylation end product-specific receptor; Receptor for advanced glycosylation end products; AGER
Background Mediates interactions of advanced glycosylation end products (AGE). These are nonenzymatically glycosylated proteins which accumulate in vascular tissue in aging and at an accelerated rate in diabetes. Acts as a mediator of both acute and chronic vascular inflammation in conditions such as atherosclerosis and in particular as a complication of diabetes. AGE/RAGE signaling plays an important role in regulating the production/expression of TNF-alpha, oxidative stress, and endothelial dysfunction in type 2 diabetes. Interaction with S100A12 on endothelium, mononuclear phagocytes, and lymphocytes triggers cellular activation, with generation of key proinflammatory mediators. Interaction with S100B after myocardial infarction may play a role in myocyte apoptosis by activating ERK1/2 and p53/TP53 signaling (By similarity). Receptor for amyloid beta peptide. Contributes to the translocation of amyloid-beta peptide (ABPP) across the cell membrane from the extracellular to the intracellular space in cortical neurons. ABPP-initiated RAGE signaling, especially stimulation of p38 mitogen-activated protein kinase (MAPK), has the capacity to drive a transport system delivering ABPP as a complex with RAGE to the intraneuronal space. Can also bind oligonucleotides.
Application Dilution
WB 1:300-5000
FCM 1:20-100
IF(IHC-P) 1:50-200
IF(IHC-F) 1:50-200
IF(ICC) 1:50-200